Increasing world rice production is vital to meet the dietary demands of growing global population. In Malaysia, rice is the most important food crop and is cultivated in about 0.6 million ha of arable land in the country. Conventional rice breeding carried out for the last 45 years resulted in the release of about 40 commercial modern cultivars having an average yield of about 5 tons ha-1.

Despite these advances, rice production is inadequate and has been on a plateau in recent years in rice producing and exporting countries. The introduction of genes from wild sources is one approach to further improve yield and yield related traits besides resistance to biotic and abiotic stress which has been demonstrated in many crop species. It is believed that the process of introducing the wild genes will reintroduce gene/traits that have gradually been weaned out due to the process of domestication.

Though the wild germplasm may not phenotypically show high yields but it is quite possible that some favourable genes may lay dormant amidst the thousands of wild accessions that could result in crop improvement. Oryza rufipogon genes imparted additional traits or improved the existing agronomic traits of O. sativa such as perenniality, better yield performance in upland or lowland conditions, grain quality, floral morphology, blast resistance and flood tolerance.

UKM had successfully transferred favourable wild alleles from O. rufipogon into O. sativa subsp. indica cv MR219 through advanced backcross breeding and developed four transgressive variants with high yield and early maturity and two transgressive variants with low to intermediate glycaemic index and high antioxidants. The new rice variety with low glycaemic index can be positioned as an agricultural solution to the increasing diabetic population in Malaysia and worldwide.

Source: Plant Molecular Biology Reporter 30:929

Key publications on these findings are given below:

  1. Sabu K.K., Abdullah M.Z., Lim L.S. and Wickneswari R. 2006. Development and evaluation of advanced backcross families of rice for agronomically important traits. Communications in Biometry and Crop Science 1(2):111-123.
  2. Sabu K.K., Abdullah M.Z., Lim L.S. and Wickneswari R. 2009. Analysis of heritability and environmental variances in a rice cross. Agronomy Research 7: 97-102.
  3. Bhuiyan M.A.R., Narimah M.K., Abdul Rahim H., Abdullah M. Z., Wickneswari R. 2010. Transgressive variants for red pericarp grain with high yield potential derived from Oryza rufipogonOryza sativa: Field evaluation, screening for blast disease, QTL validation and background marker analysis for agronomic traits. Field Crops Research 121:232-239.
  4. Tilakavati Karupaiah, Chuah Khun Aik, Tan Choon Heen, Satiapoorany Subramaniam, Atiqur R Bhuiyan, Parviz Fasahat, Abdullah M Zain  and Wickneswari Ratnam. A transgressive brown rice mediates favourable glycemic and insulin responses. Journal of Science of Food and Agriculture 91: 1951–1956.
  5. Wickneswari R., M.A.R. Bhuiyan, K. K. Sabu, L.S. Lim, M.J. Thomson, Narimah M.K., Abdullah M. Z. 2012. Identification and validation of quantitative trait loci for agronomic traits in advanced backcross breeding lines derived from Oryza rufipogonOryza sativa cultivar MR219. Plant Molecular Biology Reporter 30:929– DOI: 10.1007/s11105-011-0404-4.
  6. Fasahat P, Abdullah A, Muhammad K, Karupaiah T, Ratnam W(2012) Red pericarp advanced breeding lines derived from Oryza rufipogon × Oryza sativa: Physicochemical properties, total antioxidant activity, phenolic compounds and vitamin E content. Advance Journal of Food Science and Technology. 4(3): 155-165.
  7. Fasahat P., Muhammad K., Aminah A. & Wickneswari R. 2012. Amylose Content and Grain Length of New Rice Transgressive Variants Derived from a Cross Between rufipogon and Malaysian Rice Cultivar MR219. International Journal on Advanced Science E n g i n e e r i n g Information Technology. 2(4):20-23.
  8. Rahim H.A., M.A.R. Bhuiyan, L.S. Lim, K.K. Sabu, A. Saad, M. Azhar and Wickneswari. 2012. Identification of quantitative trait loci for blast resistance in BC2F3and BC2F5 advanced backcross families of rice. Genetics and Molecular Research 11 (3): 3277-3289. DOI: 10.4238/2012.September.12.11
  9. Fasahat P., Muhammad K., Aminah A. and Wickneswari R. 2012. Proximate nutritional composition and antioxidant properties of Oryza rufipogon, a wild rice collected from Malaysia compared to cultivated rice, MR219. Australian Journal of Crop Science6(11):1502-1507.
  10. Fasahat P., Muhammad K., Abdullah A. and Wickneswari R. 2012. Identification of introgressed alien chromosome segments associated with grain quality in Oryza rufipogonx MR219 advanced breeding lines using SSR markers. Genetics and Molecular Research 11 (3): 3534-3546.
  11. Fasahat, P., Abdullah, A., Muhammad, K., Musa, K.H. and Wickneswari, R New red rice transgressive variants with high antioxidant capacity. International Food Research Journal 20(3): 1497-1501.
  12. Wickneswari R. and Bhuiyan M.A.R. 2014. Exploiting wild accessions for development of new rice genotypes for high yield. Malaysian Applied Biology 43(2):89-95.
  13. Fasahat P., Kharidah M., Aminah A., Bhuiyan M.A.R., Ngu M.S., Gauch Jr H.G.., Wickneswari R. 2014. Genotype × environment assessment for grain quality traits in rice. Communications in Biometry and Crop Science 9(2):71–82.
  14. Wickneswari R., Bhuiyan M.A.R., Wong K.K. and Tih S. 2013. Red Rice (Oryza sativa L.). In: Aminah A., Wong K.K. and Tih (eds.), Plant Biodiversity-Based Research, Innovation and Business Opportunities I. Biobiz Innovation Research Group, Universiti Kebangsaan Malaysia. Pp.65-74.
  15. Hossain M.K., Ong S.T., Kalaivani N., Jena K.K., Bhuiyan M.A.R. and Wickneswari R. 2014. Identification and validation of sheath blight resistance in rice (Oryza sativa L.) cultivars against Rhizoctonia solani. Canadian Journal of Plant Pathology 36(4):482-490. 10.1080/07060661.2014.970577. Published online 16 October 2014.
  16. Ngu M.S., M.J. Thomson, M.A.R. Bhuiyan, C. Ho and R. Wickneswari, 2014. Fine mapping of a grain weight quantitative trait locus, qGW6, using near isogenic lines derived from Oryza rufipogon IRGC105491 and Oryza sativa cultivar MR219. Genetics and Molecular Research 13(4):9477-9488.
  17. Azreen N.M, Siju S., Md. Atiqur Rahman Bhuiyan M.A.R. and Wickneswari R. 2014. Estimation of genetic diversity and identification of potential rice line for two-line hybrid based on microsatellite marker and phenotypic trait analysis. Malaysian Applied Biology 43(2):81-88.
  18. Wickneswari R. and Bhuiyan M.A.R. 2014. Exploiting wild accessions for development of new rice genotypes for high yield. Malaysian Applied Biology 43(2):89-95.
  19. Fasahat P., Kharidah M., Aminah A., Bhuiyan M.A.R., Ngu M.S., Gauch Jr H.G.., Wickneswari R. 2014. Genotype × environment assessment for grain quality traits in rice. Communications in Biometry and Crop Science 9(2):71–82.
  20. Cheah B. H., Kalaivani N., Divate M. D. and Wickneswari R. 2015. Identification of four fuctionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage. BMC Genomics 16:692. DOI 10.1186/s12864-015-1851-3.
  21. Noraziyah Abd Aziz Shamsudin, B. P. Mallikarjuna Swamy, Wickneswari Ratnam, Ma. Teressa Sta. Cruz, Nitika Sandhu, Anitha K. Raman and Arvind Kumar. 2016. Pyramiding of drought yield QTLs into a high quality Malaysian rice cultivar MRQ74 improves yield under reproductive stage drought. Rice 9:21. DOI 10.1186/s12284-016-0093-6.
  22. Noraziyah Abd Aziz Shamsudin, B. P. Mallikarjuna Swamy, Wickneswari Ratnam, Ma. Teressa Sta. Cruz, Anitha Raman and Arvind Kumar. 2016. Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC Genetics 17:30.
  23. Chee-Hee Se, Khun-Aik Chuah, Ankitta Mishra, Ratnam Wickneswari and Tilakavati Karupaiah. 2016. Evaluating Crossbred Red Rice Variants for Postprandial Glucometabolic Responses: A Comparison with Commercial Varieties. Nutrients 8:308; doi:10.3390/nu8050308ts. Published online 20 May 2016.
  24. Hossain M.K., Jena K.K., Bhuiyan M.A.R. and Wickneswari R. 2016. Association between QTLs and morphological traits toward sheath blight resistance in rice (Oryza sativa L.). Breeding Science 66: 613–626. doi:10.1270/jsbbs.15154. Published online 4 August 2016.
  25. Swamy, B. P. M., Shamsudin, N. A. A., Rahman, S. N. A., Mauleon, R., Ratnam, W., Sta. Cruz, M. T., & Kumar, A. 2017. Association mapping of yield and yield related traits under reproductive stage drought stress in rice (Oryza sativa L.). Rice 10:21. DOI 10.1186/s12284-017-0161-6. Published online 18 May 2017.
  26. Wickneswari R. Nadarajah K. and Choong C.Y. (eds.) 2017. Applications of High Technology in Varietal Improvement of Rice. Penerbit UKM, Bangi, Malaysia, 140p.
  27. Abdullah Sani, N., Sawei, J., Ratnam, W. and Abdul Rahman, Z. 2018. Physical, antioxidant and antibacterial properties of rice (Oryza sativa L.) and glutinuous rice (Oryza sativa var. glutinosa) from local cultivators and markets. International Food Research Journal 25(6):2328-2336.